3 電源完整性PI
PI的提出,源于當(dāng)不考慮電源的影響下基于布線和器件模型而進(jìn)行SI分析時(shí)所帶來的巨大誤差,相關(guān)概念如下。
◆ 電子噪聲,指電子線路中某些元器件產(chǎn)生的隨機(jī)起伏的電信號(hào)。
◆ 地彈噪聲。當(dāng)PCB板上的眾多數(shù)字信號(hào)同步進(jìn)行切換時(shí)(如CPU的數(shù)據(jù)總線、地址總線等),由于電源線和地線上存在阻抗,會(huì)產(chǎn)生同步切換噪聲,在地線上還會(huì)出現(xiàn)地平面反彈噪聲(簡(jiǎn)稱地彈)。SSN和地彈的強(qiáng)度也取決于集成電路的I/O特性、PCB板電源層和地平面層的阻抗以及高速器件在PCB板上的布局和布線方式。負(fù)載電容的增大、負(fù)載電阻的減小、地電感的增大、同時(shí)開關(guān)器件數(shù)目的增加均會(huì)導(dǎo)致地彈的增大。
◆ 回流噪聲。只有構(gòu)成回路才有電流的流動(dòng),整個(gè)電路才能工作。這樣,每條信號(hào)線上的電流勢(shì)必要找一個(gè)路徑,以從末端回到源端。一般會(huì)選擇與之相近的平面。由于地電平面(包括電源和地)分割,例如地層被分割為數(shù)字地、模擬地、屏蔽地等,當(dāng)數(shù)字信號(hào)走到模擬地線區(qū)域時(shí),就會(huì)產(chǎn)生地平面回流噪聲。
◆ 斷點(diǎn),是信號(hào)線上阻抗突然改變的點(diǎn)。如用過孔(via)將信號(hào)輸送到板子的另一側(cè),板間的垂直金屬部分是不可控阻抗,這樣的部分越多,線上不可控阻抗的總量就越大。這會(huì)增大反射。還有,從水平方向變?yōu)榇怪狈较虻?0°的拐點(diǎn)是一個(gè)斷點(diǎn),會(huì)產(chǎn)生反射。如果這樣的過孔不能避免,那么盡量減少它的出現(xiàn)。
在一定程度上,我們只能減弱因電源不完整帶來的系列不良結(jié)果,一般會(huì)從降低信號(hào)線的串繞、加去耦電容、盡量提供完整的接地層等措施著手。
4 EMC
EMC包括電磁干擾和電磁抗干擾兩個(gè)部分。
一般數(shù)字電路EMS能力較強(qiáng),但是EMI較大。電磁兼容技術(shù)的控制干擾,在策略上采用了主動(dòng)預(yù)防、整體規(guī)劃和“對(duì)抗”與“疏導(dǎo)”相結(jié)合的方針。
主要的EMC設(shè)計(jì)規(guī)則有:
① 20H規(guī)則。PowerPlane(電源平面)板邊緣小于其與GroundPlane(地平面)間距的20倍。
?、?接地面處理。接地平面具有電磁學(xué)上映象平面(ImagePlane) 的作用。若信號(hào)線平行相鄰于接地面,可產(chǎn)生映像電流抵消信號(hào)電流所造成的輻射場(chǎng)。PCB上的信號(hào)線會(huì)與相鄰的接地平面形成微波工程中常見的Micro-strip Line(微帶線)或Strip Line(帶狀線)結(jié)構(gòu),電磁場(chǎng)會(huì)集中在PCB的介質(zhì)層中,減低電磁輻射。
因?yàn)?,Strip Line的EMI性能要比Micro-strip Line的性能好。所以,一些輻射較大的走線,如時(shí)鐘線等,最好走成Strip Line結(jié)構(gòu)。
③ 混合信號(hào)PCB的分區(qū)設(shè)計(jì)。第一個(gè)原則是盡可能減小電流環(huán)路的面積;第二個(gè)原則是系統(tǒng)只采用一個(gè)參考面。相反,如果系統(tǒng)存在兩個(gè)參考面,就可能形成一個(gè)偶極天線;而如果信號(hào)不能通過盡可能小的環(huán)路返回,就可能形成一個(gè)大的環(huán)狀天線。對(duì)于實(shí)在必須跨區(qū)的情況,需要通過,在兩區(qū)之間加連接高頻電容等技術(shù)。
④ 通過PCB分層堆疊設(shè)計(jì)控制EMI輻射。PCB分層堆疊在控制EMI輻射中的作用和設(shè)計(jì)技巧,通過合適的疊層也可以降低EMI。
從信號(hào)走線來看,好的分層策略應(yīng)該是把所有的信號(hào)走線放在一層或若干層,這些層緊挨著電源層或接地層。對(duì)于電源,好的分層策略應(yīng)該是電源層與接地層相鄰,且電源層與接地層的距離盡可能小,這就是我們所講的“分層"策略。
?、?降低EMI的機(jī)箱設(shè)計(jì)。實(shí)際的機(jī)箱屏蔽體由于制造、裝配、維修、散熱及觀察要求,其上一般都開有形狀各異、尺寸不同的孔縫,必須采取措施來抑制孔縫的電磁泄漏。一般來說,孔縫泄漏量的大小主要取決于孔的面積、孔截面上的最大線性尺寸、頻率及孔的深度。
?、?其它技術(shù)。在IC的電源引腳附近合理地安置適當(dāng)容量的電容,可使IC輸出電壓的跳變來得更快。然而,問題并非到此為止。由于電容呈有限頻率響應(yīng)的特性,這使得電容無法在全頻帶上生成干凈地驅(qū)動(dòng)IC輸出所需要的諧波功率。除此之外,電源匯流排上形成的瞬態(tài)電壓在去耦路徑的電感兩端會(huì)形成電壓降,這些瞬態(tài)電壓就是主要的共模EMI干擾源。為了控制共模EMI,電源層要有助於去耦和具有足夠低的電感,這個(gè)電源層必須是一個(gè)設(shè)計(jì)相當(dāng)好的電源層的配對(duì)。問題的答案取決于電源的分層、層間的材料以及工作頻率(即IC上升時(shí)間的函數(shù))。通常,電源分層的間距是0.5mm(6mil),夾層是FR4材料,則每平方英寸電源層的等效電容約為75pF。顯然,層間距越小電容越大。
5 熱設(shè)計(jì)
電子元件密度比以前高了很多,同時(shí)功率密度也相應(yīng)有了增加。由于電子元器件的性能會(huì)隨溫度發(fā)生變化,溫度越高其電氣性能會(huì)越低。
(1)數(shù)字電路散熱原理
半導(dǎo)體器件產(chǎn)生的熱量來源于芯片的功耗,熱量的累積必定導(dǎo)致半導(dǎo)體結(jié)點(diǎn)溫度的升高。隨著結(jié)點(diǎn)溫度的提高,半導(dǎo)體器件性能將會(huì)下降,因此芯片廠家都規(guī)定了半導(dǎo)體器件的結(jié)點(diǎn)溫度。在高速電路中,芯片的功耗較大,在正常條件下的散熱不能保證芯片的結(jié)點(diǎn)溫度不超過允許工作溫度,因此需要考慮芯片的散熱問題。
在通常條件下,熱量的傳遞通過傳導(dǎo)、對(duì)流、輻射3種方式進(jìn)行。
散熱時(shí)需要考慮3種傳熱方式。例如使用導(dǎo)熱率好的材料,如銅、鋁及其合金做導(dǎo)熱材料,通過增加風(fēng)扇來加強(qiáng)對(duì)流,通過材料處理來增強(qiáng)輻射能力等。
簡(jiǎn)單熱量傳遞模型:熱量分析中引入一個(gè)熱阻參數(shù),類似于電路中的電阻。如果電路中的電阻計(jì)算公式為R=ΔE/I,則對(duì)應(yīng)的熱阻對(duì)應(yīng)公式為R=Δt/P(P表示功耗,單位W;Δt表示溫差,單位℃)。熱阻的單位為℃/W,表示功率增加1W時(shí)所引起的溫升??紤]集成芯片的熱量傳遞,可以使用圖5描述的溫度計(jì)算模型。
由上所述,可推導(dǎo)出
Tc=Tj-P× RJC
也就是說,當(dāng)Tc實(shí)測(cè)值小于根據(jù)數(shù)據(jù)手冊(cè)所提供數(shù)據(jù)計(jì)算出的最大值時(shí),芯片可正常工作。
?。?)散熱處理
為了保證芯片能夠正常工作,必須使Tj不超過芯片廠家提供的允許溫度。根據(jù)Tj=Ta+P×R可知,如果環(huán)境溫度降低,或者功耗減少、熱阻降低等都能夠使Tj降低。實(shí)際使用中,對(duì)環(huán)境溫度的要求可能比較苛刻,功耗降低只能依靠芯片廠家技術(shù),所以為了保證芯片的正常工作,設(shè)計(jì)人員只能在降低熱阻方面考慮。
結(jié) 語
以上提到的高速單片機(jī)設(shè)計(jì)思想和方法,目前已經(jīng)在國(guó)外的公司得到實(shí)踐和發(fā)展,但是國(guó)內(nèi)這方面的研究和實(shí)踐還很少。該設(shè)計(jì)思想在我們公司實(shí)踐、摸索,提高了產(chǎn)品可靠性。在這里推薦給各位同行,期望共同探討。
轉(zhuǎn)載請(qǐng)注明出處。