引言
隨著半導(dǎo)體激光器的廣泛應(yīng)用,在雷達(dá)。遙控遙測。航空航天等應(yīng)用中對其叮靠性提出了越來越高的要求。而半導(dǎo)體激光器的芯片焊接工藝對其可靠性有著直接的影響,腔面爬銦和焊接空洞是In焊接封裝技術(shù)面臨的豐要問題。也是最大挑戰(zhàn).ln焊接時將管芯焊在熱沉之上,而有源區(qū)距離熱沉只有幾微米,如果焊料太多,受熱時會發(fā)生緩慢的攀移,使半導(dǎo)體激光器腔而爬銦,導(dǎo)致激光器退化。如果焊料太少,就會出現(xiàn)焊接窄洞問題,將影響焊接的機(jī)械性能。導(dǎo)熱。導(dǎo)電性能,并且增大熱阻,衰減壽命,甚至失效,因此,選擇合適的焊料和焊接技術(shù)至關(guān)重要。本文針對周內(nèi)廣泛應(yīng)用的808 nm高功率半導(dǎo)體激光器在普通焊接過程中暴露出的無還原氣體保護(hù)。空洞率高。定位精度差等許多影響成品率的問題進(jìn)行了改進(jìn),使用Centrotherm公司的VL020真空燒結(jié)設(shè)備深人研究了真空燒結(jié)時所需的焊接夾具和焊接工藝曲線,降低了焊接空洞率。提高了焊接的成品率。
1 影響焊接質(zhì)量的因素
目前,大功率半導(dǎo)體激光器多采用P面燒結(jié),以實現(xiàn)良好的散熱。因而激光器芯片P面金屬化質(zhì)量直接影響燒結(jié)的質(zhì)量,同時,熱沉和芯片的前期處理.In焊料厚度和芯片表面的壓力等參數(shù)也必須要充分重視,并采取相應(yīng)措施,加以嚴(yán)格控制。
1.1 激光器芯片P面金屬化要求
激光器芯片P面襯底一般生長Ti-Pl-Au,當(dāng)金層在基片上附著力低,合金不好時,則會發(fā)生起層現(xiàn)象,嚴(yán)重影響燒結(jié)的質(zhì)量;當(dāng)金層不夠致密且較薄時,在Au和In浸潤時,沒有足夠的Au與In結(jié)合反應(yīng),所以,激光器芯片P面金屬化質(zhì)量直接影響燒結(jié)的質(zhì)量。
1.2熱沉和芯片的前期處理
可焊性。附著力。表血粗糙度和鍍層均勻性等特性決定激光器芯片P面金屬化和熱沉的質(zhì)量,如果這些特性不好,就會導(dǎo)致In焊料流淌不均勻。芯片的燒結(jié)面積不足進(jìn)而產(chǎn)生李洞現(xiàn)象。因此,應(yīng)選擇激光器P面金屬化良好的芯片。同時,激光器芯片在投入使用前必須進(jìn)行嚴(yán)格處理,不潔凈的激光器芯片會造成枉燒結(jié)過程中產(chǎn)生Au/In合金浸潤不完全現(xiàn)象,從而影響燒結(jié)的效果。另外,熱沉和焊料長時間存放,其表面的氧化層會很厚,焊料熔化后留下的氧化膜會存燒結(jié)后形成空洞。因此本實驗使用德同PINK公司的V6一G等離子清洗機(jī),將焊接表面的雜質(zhì)用等離子轟山,同時為了熱沉。芯片和焊料的氧化程度可以降到最低,本文在燒結(jié)過程中向VL020真空焊接設(shè)備爐腔內(nèi)充人少量氫氣以還原部分氧化物。
1.3 In厚度問題
激光器芯片粘貼J:藝過程中,焊料被擠m的餐和芯片卜所施加的力受焊料層厚度的影響.In焊接時,In焊料既不能太厚也不能太薄。如果太厚,In焊料受熱時則會發(fā)生緩慢的攀移,導(dǎo)致腔面爬In;如果太薄,就會出現(xiàn)焊接窄洞問題,將影響焊接后的導(dǎo)熱。導(dǎo)電性能,增大熱阻,衰減壽命,甚至失效。與此同時,半導(dǎo)體激光器芯片的溫度和焊料層熱應(yīng)力也受到焊料層厚度的影響,In焊料太厚將會影響激光器芯片的散熱In焊料太薄,又會發(fā)生熱失配而引起芯片斷裂,閎此,為了提高器件封裝的可靠性,要在溫度。熱應(yīng)力和整體封裝厚度之間進(jìn)行權(quán)衡來選取適當(dāng)?shù)暮噶蠈雍穸取?/span>
1.4芯片表面的壓力設(shè)置
為了有效減小芯片和熱沉問的焊接空洞,需要在激光器芯片下施加一定的壓力。通過夾具控制壓力大小,同時多個芯片批量組裝的問題也得到解決。此外,在燒結(jié)過程中有氣流變化對夾具定位也防止了芯片移動。圖1為實驗采用的不銹鋼夾具,在燒結(jié)過程中該央具為激光器芯片提供定位和壓力,對芯片表面施加的壓力既不能太大也不能太小,太大會導(dǎo)致芯片斷裂,太小會導(dǎo)致焊接后的芯片不平或邊緣沒有焊料浸潤而產(chǎn)生守洞現(xiàn)象。
2 實驗及結(jié)果分析
針對P面金屬化良好的808 nm.半導(dǎo)體激光器芯片,加強(qiáng)熱沉表而的光潔度。平整度以及燒結(jié)前熱沉及芯片灰面的清潔處理二采用真空燒結(jié)工藝制作了四組樣品,進(jìn)行實驗研究和分析。對熱沉樣品首先進(jìn)行預(yù)處理,然后各取6只樣品分別經(jīng)受1,2,3和4組試驗。,通過對實驗后樣品進(jìn)行掃描電子顯微鏡微觀形貌觀察和對比分析,得到了壓力.In的厚度。工藝曲線與燒結(jié)質(zhì)量的關(guān)系。
2.1 VL020真空焊接工藝
采用德同VL020剎真空焊接設(shè)備進(jìn)行燒結(jié)工藝.VL020真窄燒結(jié)焊接設(shè)備是專門為在多種氣體環(huán)境進(jìn)行燒結(jié),通過抽真空最大限度地降低氧化物含量。減少奈洞等缺陷而設(shè)計的燒結(jié)系統(tǒng),燒結(jié)原理和基本流程如下。
系統(tǒng)檢測(用于檢測系統(tǒng)足否準(zhǔn)備就緒)一加熱平板檢測一抽真窄形成惰性氣體環(huán)境一允人氮?dú)猓ń档脱鯕鉂舛龋┏榭詹⒊淙霘錃猓ㄗ鳛檫€原氣,防止In焊料被氧化)一加熱至燒結(jié)溫度以下并保持(預(yù)加熱150℃有助于In焊料達(dá)到熱平衡)一迅速升溫加熱至熔點以上(210℃確??焖偃诨┮怀檎婵眨ǔ槿ズ噶现械臍馀荩M量減少空穴等缺陷以免降低燒結(jié)質(zhì)量)一充入氫氣(確保焊料與熱沉的緊密接觸并防止焊料氧化)一系統(tǒng)冷卻一抽真宅(僅用于充人氫氣之后)一充人氮?dú)猓ㄖ脫Q氫氣,保持真空窒的清潔)一充人壓縮氣體吹水并開門一程序運(yùn)行結(jié)束。
2.2夾具和壓力的影響
分析設(shè)計出新燒結(jié)夾具,在燒結(jié)的過程中對管芯施加適當(dāng)?shù)膲毫Γ鉀Q了燒結(jié)過程中的“縮銦”。焊料不均勻和管芯傾斜等問題,改善了管芯的散熱條件。圖2是采用加壓和未采用加壓燒結(jié)后管芯腔面的對比圖二可以看到,無加壓燒結(jié)后,由于縮銦造成在管心和熱沉之間的部分區(qū)域出現(xiàn)宅洞,大大影響了管芯散熱。而加壓燒結(jié)后的管芯和熱沉之問結(jié)合緊密,In焊料和熱沉之問的分界不明顯。
對第1組樣品進(jìn)行多次實驗發(fā)現(xiàn),壓力的增加有利于實現(xiàn)Au和In之間的緊密接觸,能使In焊料與Au能夠充分和快速潤濕,提高焊接的質(zhì)量。但是壓力過大,芯片可能會斷裂。在2 mm x0.1 mm芯片的樣品卜,施加35 g的壓力后,如表1所示:
大部分樣品抗剪測試參數(shù)大于 2.0 kg,芯片有效焊接面積都在98%以上,此壓力完個能滿足芯片焊接的靠性要求。從X射線圖2中可看到,芯片焊接緊密,而且芯片斷裂現(xiàn)象也末出現(xiàn)。
2.3 In厚度的影響分析
一般通過焊層的剪切強(qiáng)度,焊層微觀結(jié)構(gòu)等性能來評價焊層質(zhì)量。本文對第2組6個樣品分別用 l,3和 5 微米 In層的焊接情況進(jìn)行了比較。實驗條件:焊接溫度都為210℃,焊接后保溫時問均為25 s,壓力為35 g,氣氛為氫氣保護(hù),流量為1.5 L/min,實驗結(jié)果如圖3所示;實驗結(jié)果表明,采用5微米的鍍In樣品焊接最好,采用1微米的鍍In樣品焊接最差。對采用l微米層的鍍In樣晶焊接后施加很小推力,芯片就會脫落,剪切強(qiáng)度可近似為0,該結(jié)果說明如果In層太薄。則對In的氧化在焊接過程中起主導(dǎo)作用,從而無法實現(xiàn)焊接。圖3是不同In層厚度芯片焊接后焊層的剪切強(qiáng)度曲線。
對第3組6個樣品分別用 5和8um In層的焊接情況進(jìn)行了比較,結(jié)果如圖4所示。結(jié)果發(fā)現(xiàn)5um鍍In樣晶結(jié)果較好,8 um鍍In樣品發(fā)現(xiàn)腔而出現(xiàn)爬銦現(xiàn)象。
2.4燒結(jié)工藝曲線的影響分析
采用VL020真空燒結(jié)系統(tǒng)可以提高燒結(jié)工藝的一致性,還可以通過編程方式優(yōu)化燒結(jié)程序。在燒結(jié)程序巾綜合考慮了梯度升溫。峰值溫度。抽真空和梯度降溫等工藝條件,不僅有效去除焊料中間的空間,而且使In焊料與管芯和cu熱沉結(jié)合更緊密。圖5是優(yōu)化后的燒結(jié)曲線示意圖。圖中Q為氣體流量,T為溫度,t為時間。
在整體封裝過程中的技術(shù)難點和優(yōu)化工藝:①大功率半導(dǎo)體激光器芯片的焊接過程中有一個相對快速的升。降溫過程,夾具上面的熱量分布直接受到焊接數(shù)量的影響,而In焊料對溫度和熔化時問都有嚴(yán)格的要求。時間過短,Au/In合金侵潤不完全;時間太長。In焊料將會造成腔面爬鋼現(xiàn)象,因此,焊接溫度曲線的優(yōu)化設(shè)計足一重大技術(shù)難點②關(guān)于夾具設(shè)計制作,通過設(shè)計高精度芯片焊接定位夾具,使其具裝配焊接精度達(dá)到±0.025mm的技術(shù)要求。炙具設(shè)計克服了通常依賴進(jìn)口價格昂貴的石墨夾具,自行設(shè)計的新型材料夾具保證裝配的高精度和快速熱量傳遞,但是加工精度也是一技術(shù)難點。③實驗中在2 mm x 0.1 mm芯片的樣品L.施加35 g的壓力焊接后,芯片有效焊接面積都在98%以上,此壓力完全能滿足芯片焊接的靠性要求,可以作為比較合適的工藝參數(shù)。④實驗中采用焊接溫度為210度焊接后保溫時間25s壓力35 g,氫氣作為保護(hù)氣,且流量為1.5 L/min時,最好采用5um層的鍍In樣品焊接。
3 結(jié)語
本文對半導(dǎo)體激光器芯片的焊接工藝進(jìn)行了深入的研究,實驗解決了真空焊接沒備焊接中的夾具。設(shè)計制作技術(shù)難關(guān)。焊接溫度曲線優(yōu)化的難點,實驗結(jié)果表明:采用VL020真空焊接設(shè)備對半導(dǎo)體激光器芯片進(jìn)行焊接的過程中,通過選取合適的工裝夾具和工藝曲線來獲得較低的空洞率和較高的成品率是可行的,解決了傳統(tǒng)生產(chǎn)工藝中存在的窄洞較多和熱阻較大等質(zhì)量隱患,提高產(chǎn)品的可靠性.
轉(zhuǎn)載請注明出處。