激光沉積增材制造(LDM)過程中的幾何缺陷嚴(yán)重影響制件成形精度和可重復(fù)性,制約了該技術(shù)在關(guān)鍵領(lǐng)域的應(yīng)用。國(guó)內(nèi)外學(xué)者對(duì)常見幾何缺陷的形成機(jī)制、激光沉積制造過程監(jiān)測(cè)及缺陷調(diào)控進(jìn)行了深入研究,常見幾何缺陷可分為表面不平整、熔化塌陷、翹曲變形、分層開裂四類。
LDM中的幾何缺陷研究路線圖研究難點(diǎn)或瓶頸
目前,幾何缺陷的形成機(jī)制研究包括熔池失穩(wěn)、復(fù)雜的熱歷史、殘余應(yīng)力、材料/能量波動(dòng)等,可分為系統(tǒng)性因素和隨機(jī)性因素。幾何缺陷的緩解及補(bǔ)償大多為工藝參數(shù)調(diào)控、預(yù)熱緩冷、基于仿真或形貌監(jiān)測(cè)的預(yù)變形及補(bǔ)償,結(jié)合形成機(jī)制—過程監(jiān)測(cè)—缺陷調(diào)控的閉環(huán)控制系統(tǒng)仍未形成完整體系。
LDM中的典型幾何缺陷
LDM中的幾何缺陷形成因素
未來(lái)展望
由于諸多隨機(jī)因素和工藝參數(shù)之間復(fù)雜的相互作用,工藝參數(shù)對(duì)幾何缺陷的影響尚未完全量化,需要進(jìn)行進(jìn)一步的研究并制定新的過程監(jiān)測(cè)和緩解戰(zhàn)略。
首先,進(jìn)一步擴(kuò)大全尺寸制件的過程監(jiān)測(cè)和變形預(yù)測(cè),適應(yīng)LDM技術(shù)向大尺寸構(gòu)件轉(zhuǎn)變的發(fā)展趨勢(shì)。
第二,采用多傳感器和多信號(hào)數(shù)據(jù)融合技術(shù),建立多維特征數(shù)據(jù)庫(kù)來(lái)預(yù)測(cè)幾何缺陷并形成主動(dòng)反饋控制,有效提高成形精度和加工效率。
第三,過程監(jiān)測(cè)與人工智能和數(shù)值模擬相結(jié)合,通過機(jī)器學(xué)習(xí)等人工智能技術(shù)準(zhǔn)確地區(qū)分幾何缺陷相關(guān)的信號(hào)信息并建立相關(guān)數(shù)據(jù)庫(kù),采用多物理場(chǎng)和多尺度數(shù)值模擬技術(shù)預(yù)測(cè)成形質(zhì)量和潛在風(fēng)險(xiǎn)。
論文原文鏈接:
doi.org/10.1016/j.cjmeam.2022.100052
https://www.sciencedirect.com/science/article/pii/S2772665722000368?
論文引用:
Lanyun Qin, Kun Wang, Xiaodan Li, Siyu Zhou, Guang Yang. Review of the Formation Mechanisms and Control Methods of Geometrical Defects in Laser Deposition Manufacturing. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(4).
沈航楊光教授團(tuán)隊(duì)丨基于激光-粉末-熔池相互作用的選區(qū)激光熔化內(nèi)部缺陷形成機(jī)理綜述
團(tuán)隊(duì)帶頭人介紹
楊光,工學(xué)博士,教授,博導(dǎo)。沈陽(yáng)航空航天大學(xué)機(jī)電工程學(xué)院副院長(zhǎng);遼寧省高性能金屬增材制造工程研究中心主任;沈陽(yáng)增材制造工程技術(shù)研究中心主任。多年來(lái)投身航空航天類高性能金屬增材技術(shù)研究,已獲授權(quán)發(fā)明專利16項(xiàng)、發(fā)表論文80余篇。研究成果已在某3代重型戰(zhàn)機(jī)、4代隱身戰(zhàn)機(jī)、航空發(fā)動(dòng)機(jī)等重點(diǎn)型號(hào)承力結(jié)構(gòu)件制造、運(yùn)維方面規(guī)?;瘧?yīng)用,解決批產(chǎn)和科研瓶頸難題,取得了顯著的經(jīng)濟(jì)和社會(huì)效益。
團(tuán)隊(duì)研究方向
(1)增材制造工藝與裝備;
(2)增材制造/修復(fù)、性能考核、評(píng)價(jià)和應(yīng)用;
(3)增材制造缺陷形成機(jī)制及防控。
近年團(tuán)隊(duì)發(fā)表文章
[1] Yang G, Deng F, Zhou S, et al. Microstructure and mechanical properties of a novel Cu-reinforced maraging steel for wire arc additive manufacturing[J]. Materials Science and Engineering: A, 2021, 825: 141894.
[2] Guang Yang, Yilian Xie, Shuo Zhao, Lanyun Qin, Xiangming Wang, Bin Wu. Quality control: Internal defects formation mechanism of selective laser melting based on laser-powder-melt pool interaction: A review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(3).
[3] Qin Lanyun,Zhao Dongxu,Wang Wei,Yang Guang. Geometric defects identification and deviation compensation in laser deposition manufacturing[J]. Optics and Laser Technology,2022,155.
[4] Zhou Siyu, Wu Ke, Yang Guang, Wu Bin, Qin Lanyun, Wu Hao, Yang Chaoyue. Microstructure and mechanical properties of wire arc additively manufactured 205A high strength aluminum alloy: The comparison of as-deposited and T6 heat-treated samples[J]. Materials Characterization, 2022, 189: 111990.
[5] Deng Fangbin, Yang Guang, Wu Bin, Qin Lanyun, Zheng Jianshen, Zhou Siyu. Microstructure and mechanical properties of hybrid-manufactured maraging steel component using 4% nitrogen shielding gas fabricated by wrought-wire arc additive manufacturing[J]. Coatings, 2022, 12(3): 356.
[6] Zhou Siyu, Zhang Jianfei, Wang Jiayin, Yang Guang, Wu Ke, Qin Lanyun. Effect of Oxygen Levels in Tent Shielding Atmosphere on Microstructural and Mechanical Properties of Ti-6Al-4V Fabricated by Wire Arc Additive Manufacturing[J]. Journal of Materials Engineering and Performance, 2022: 1-10.
[7] Wu Bin,Huang Jianxin,Yang Guang,Ren Yuhang,Zhou Siyu,An Da. Effects of ultrasonic shot peening on fatigue behavior of TA15 titanium alloy fabricated by laser melting deposition[J]. Surface & Coatings Technology,2022,446.
轉(zhuǎn)載請(qǐng)注明出處。