鎂合金鑄造缺陷的激光修復(fù)
鎂合金鑄件常存在氣孔、夾雜等缺陷,而這些缺陷通常是零件加工到要求的尺寸后才被發(fā)現(xiàn),因此導(dǎo)致鎂合金鑄件成品率很低。在鎂合金缺陷的修復(fù)過程中,面臨以下幾方面的問題:
(1) 粗晶問題:鎂的熔點低(651℃),但因為鎂導(dǎo)熱快,所以必須采用較大功率的熱源,這使得鎂合金易產(chǎn)生過熱和晶粒長大。
(2) 氧化和蒸發(fā):鎂的活潑性極高,在高溫下易被氧化形成氧化鎂,其熔點高(2500℃),密度大(3.2g/cm3),在熔池中易形成細(xì)小片狀的固態(tài)夾渣。而且,鎂合金在沒有隔絕氧的情況下,還容易燃燒。在高溫下鎂還容易和空氣中的氮化合生成鎂的氮化物,使熔區(qū)性能在冷卻后變壞。鎂的沸點不高(1100℃),高溫下,鎂很容易蒸發(fā)。所以鎂合金在熔化時需要嚴(yán)格加以保護。
(3) 熱應(yīng)力:鎂及其合金熱膨脹系數(shù)較大,約為鋼的2倍,鋁的1. 2倍,所以,易引起較大的熱應(yīng)力,加劇裂紋的產(chǎn)生和引起工件變形。
(4) 裂紋:鎂容易與一些合金元素(如Cu、Al、Ni等)形成低熔點共晶,所以脆性溫度區(qū)間較寬,易形成熱裂紋。
(5) 氣孔:容易產(chǎn)生氫氣孔,氫在鎂中的溶解度隨溫度的降低而急劇減少,當(dāng)氫的來源較多時,出現(xiàn)氣孔的傾向是較大的。#p#分頁標(biāo)題#e#
(6) 熱源的控制:采用的熱源必須有足夠的能率,否則在加熱時,熱量會迅速向基體傳導(dǎo),輕則熔化層過深,重則整個基體熔化。
這使得鎂合金的修復(fù)較之普通材料實現(xiàn)起來更為困難。
本公司采用波長為1.06μm的YAG激光,在專用氣簾的保護下,有效避免了激光加工過程中,鎂合金的氧化,成功實現(xiàn)了鎂合金的激光修復(fù)。下圖分別為單道和多道激光修復(fù)的形貌照片。從橫斷面分析來看,與修復(fù)層無氣孔和裂紋、與基材呈良好的冶金結(jié)合,且對基材的熱影響極小。
應(yīng)用領(lǐng)域:鎂合金鑄件缺陷的修復(fù),如筆記本外殼、鎂合金儀表盤、鎂合金汽車零部件等。
銅合金的激光熔覆
銅具有很好的傳導(dǎo)性以及較好的機械性能,因而銅合金是工業(yè)中不可缺少的金屬材料,在電力電器、機械制造、航空航天等行業(yè)得到了廣泛的應(yīng)用。近幾年來,銅價的大幅度攀升進一步提高了銅合金零部件的成本,隨著科學(xué)技術(shù)日新月異的發(fā)展,迫切需要改進銅合金材料的性能,要求在保證高導(dǎo)熱性能或者高導(dǎo)電性的條件下,提高其硬度、耐磨性和抗電弧燒蝕性等。因此表面改性是延長銅合金零部件使用壽命、降低其使用成本的有效途徑。
目前,已有多種表面強化方法(電鍍、化學(xué)鍍、陶瓷強化、復(fù)合強化等),但是其又存在著各自的優(yōu)點、缺點,如:鍍層較厚、容易脫落、對環(huán)境有污染等,所以表面強化的技術(shù)需要進一步的改善和提高。激光表面技術(shù)為克服這些技術(shù)的難點提供了新的能量源和解決思路。
但是銅合金表面激光熔覆技術(shù)仍然存在著自身的問題:
1)銅合金的導(dǎo)熱性能良好、比熱容小、浸濕性能差、表面有堅硬的氧化膜,對光斑的反射率較大,這就使得激光產(chǎn)生的熱量在其表面不易停留,直接熔覆功能涂層難以實現(xiàn);
2)銅合金基體與涂層的材料體系之間的性能差別很大,使用過程中的界面失效問題要得到一定的重視,在中間要有相應(yīng)的過渡層連接;
3)涂層內(nèi)韌性不足,熱裂和應(yīng)力等缺陷存在于涂層內(nèi)部。
本公司采用了脈沖YAG激光成功地實現(xiàn)了銅合金表面改性,為提高銅合金的耐磨性提供了有效途徑。
轉(zhuǎn)載請注明出處。