摘要:拉曼光譜(Raman spectra),是一種散射光譜。拉曼光譜分析法是基于印度科學(xué)家C.V.拉曼(Raman)所發(fā)現(xiàn)的拉曼散射效應(yīng),對(duì)與入射光頻率不同的散射光譜進(jìn)行分析以得到分子振動(dòng)、轉(zhuǎn)動(dòng)方面信息,并應(yīng)用于分子結(jié)構(gòu)研究的一種分析方法。
1、拉曼光譜的發(fā)展歷史
印度物理學(xué)家拉曼于1928年用水銀燈照射苯液體,發(fā)現(xiàn)了新的輻射譜線(xiàn):在入射光頻率ω0的兩邊出現(xiàn)呈對(duì)稱(chēng)分布的,頻率為ω0-ω和ω0 ω的明銳邊帶,這是屬于一種新的分子輻射,稱(chēng)為拉曼散射,其中ω是介質(zhì)的元激發(fā)頻率。拉曼因發(fā)現(xiàn)這一新的分子輻射和所取得的許多光散射研究成果而獲得了1930年諾貝爾物理獎(jiǎng)。與此同時(shí),前蘇聯(lián)蘭茨堡格和曼德?tīng)査顾?bào)導(dǎo)在石英晶體中發(fā)現(xiàn)了類(lèi)似的現(xiàn)象,即由光學(xué)聲子引起的拉曼散射,稱(chēng)之謂并合散射。
法國(guó)羅卡特、卡本斯以及美國(guó)伍德證實(shí)了拉曼的觀(guān)察研究的結(jié)果。然而到1940年,拉曼光譜的地位一落千丈。主要是因?yàn)槔?yīng)太弱(約為入射光強(qiáng)的10-6),人們難以觀(guān)測(cè)研究較弱的拉曼散射信號(hào),更談不上測(cè)量研究二級(jí)以上的高階拉曼散射效應(yīng)。并要求被測(cè)樣品的體積必須足夠大、無(wú)色、無(wú)塵埃、無(wú)熒光等等。所以到40年代中期,紅外技術(shù)的進(jìn)步和商品化更使拉曼光譜的應(yīng)用一度衰落。1960年以后,紅寶石激光器的出現(xiàn),使得拉曼散射的研究進(jìn)入了一個(gè)全新的時(shí)期。由于激光器的單色性好,方向性強(qiáng),功率密度高,用它作為激發(fā)光源,大大提高了激發(fā)效率。成為拉曼光譜的理想光源。隨探測(cè)技術(shù)的改進(jìn)和對(duì)被測(cè)樣品要求的降低,目前在物理、化學(xué)、醫(yī)藥、工業(yè)等各個(gè)領(lǐng)域拉曼光譜得到了廣泛的應(yīng)用,越來(lái)越受研究者的重視。
70年代中期,激光拉曼探針的出現(xiàn),給微區(qū)分析注人活力。80年代以來(lái),美國(guó)Spex公司和英國(guó)Rrinshow公司相繼推出,位曼探針共焦激光拉曼光譜儀,由于采用了凹陷濾波器(notchfilter)來(lái)過(guò)濾掉激發(fā)光,使雜散光得到抑制,因而不在需要采用雙聯(lián)單色器甚至三聯(lián)單色器,而只需要采用單一單色器,使光源的效率大大提高,這樣入射光的功率可以很低,靈敏度得到很大的提高。Dilo公司推出了多測(cè)點(diǎn)在線(xiàn)工業(yè)用拉曼系統(tǒng),采用的光纖可達(dá)200m,從而使拉曼光譜的應(yīng)用范圍更加廣闊。
2、拉曼光譜的原理
2.1瑞利散射與拉曼散射
當(dāng)一束激發(fā)光的光子與作為散射中心的分子發(fā)生相互作用時(shí),大部分光子僅是改變了方向,發(fā)生散射,而光的頻率仍與激發(fā)光源一致,這種散射稱(chēng)為瑞利散射。但也存在很微量的光子不僅改變了光的傳播方向,而且也改變了光波的頻率,這種散射稱(chēng)為拉曼散射。其散射光的強(qiáng)度約占總散射光強(qiáng)度的10-6~10-10。拉曼散射的產(chǎn)生原因是光子與分子之間發(fā)生了能量交換改變了光子的能量。
2.2拉曼散射的產(chǎn)生
光子和樣品分子之間的作用可以從能級(jí)之間的躍遷來(lái)分析。樣品分子處于電子能級(jí)和振動(dòng)能級(jí)的基態(tài),入射光子的能量遠(yuǎn)大于振動(dòng)能級(jí)躍遷所需要的能量,但又不足以將分子激發(fā)到電子能級(jí)激發(fā)態(tài)。這樣,樣品分子吸收光子后到達(dá)一種準(zhǔn)激發(fā)狀態(tài),又稱(chēng)為虛能態(tài)。樣品分子在準(zhǔn)激發(fā)態(tài)時(shí)是不穩(wěn)定的,它將回到電子能級(jí)的基態(tài)。若分子回到電子能級(jí)基態(tài)中的振動(dòng)能級(jí)基態(tài),則光子的能量未發(fā)生改變,發(fā)生瑞利散射。如果樣品分子回到電子能級(jí)基態(tài)中的較高振動(dòng)能級(jí)即某些振動(dòng)激發(fā)態(tài),則散射的光子能量小于入射光子的能量,其波長(zhǎng)大于入射光。這時(shí)散射光譜的瑞利散射譜線(xiàn)較低頻率側(cè)將出現(xiàn)一根拉曼散射光的譜線(xiàn),稱(chēng)為Stokes線(xiàn)。如果樣品分子在與入射光子作用前的瞬間不是處于電子能級(jí)基態(tài)的最低振動(dòng)能級(jí),而是處于電子能級(jí)基態(tài)中的某個(gè)振動(dòng)能級(jí)激發(fā)態(tài),則入射光光子作用使之躍遷到準(zhǔn)激發(fā)態(tài)后,該分子退激回到電子能級(jí)基態(tài)的振動(dòng)能級(jí)基態(tài),這樣散射光能量大于入射光子能量,其譜線(xiàn)位于瑞利譜線(xiàn)的高頻側(cè),稱(chēng)為antiStokes線(xiàn)。Stokes線(xiàn)和anti-Stokes線(xiàn)位于瑞利譜線(xiàn)兩側(cè),間距相等。Stokes線(xiàn)和anti-Stokes線(xiàn)統(tǒng)稱(chēng)為拉曼譜線(xiàn)。由于振動(dòng)能級(jí)間距還是比較大的,因此,根據(jù)波爾茲曼定律,在室溫下,分子絕大多數(shù)處于振動(dòng)能級(jí)基態(tài),所以Stokes線(xiàn)的強(qiáng)度遠(yuǎn)遠(yuǎn)強(qiáng)于anti-Stokes線(xiàn)。拉曼光譜儀一般記錄的都只是Stokes線(xiàn)。
2.3拉曼位移(RamanShift)
斯托克斯與反斯托克斯散射光的頻率與激發(fā)光源頻率之差Δν統(tǒng)稱(chēng)為拉曼位移(RamanShift)。斯托克斯散射的強(qiáng)度通常要比反斯托克斯散射強(qiáng)度強(qiáng)得多,在拉曼光譜分析中,通常測(cè)定斯托克斯散射光線(xiàn)。拉曼位移取決于分子振動(dòng)能級(jí)的變化,不同的化學(xué)鍵或基態(tài)有不同的振動(dòng)方式,決定了其能級(jí)間的能量變化,因此,與之對(duì)應(yīng)的拉曼位移是特征的。這是拉曼光譜進(jìn)行分子結(jié)構(gòu)定性分析的理論依據(jù)。
2.4拉曼譜參數(shù)
拉曼譜的參數(shù)主要是譜峰的位置和強(qiáng)度。峰位是樣品分子電子能級(jí)基態(tài)的振動(dòng)態(tài)性質(zhì)的一種反映,它是用入射光與散射光的波數(shù)差來(lái)表示的。峰位的移動(dòng)與激發(fā)光的頻率無(wú)關(guān)。拉曼散射強(qiáng)度與產(chǎn)生譜線(xiàn)的特定物質(zhì)的濃度有關(guān),成正比例關(guān)系。而在紅外譜中,譜的強(qiáng)度與樣品濃度成指數(shù)關(guān)系。)樣品分子量也與拉曼散射有關(guān),樣品分子量增加,拉曼散射強(qiáng)度一般也會(huì)增加。對(duì)于一定的樣品,強(qiáng)度I與入射光強(qiáng)度I0、散射光頻率ns、分子極化率a有如下關(guān)系:I=CI0ns4a2(這里C是一個(gè)常數(shù))。
2.5拉曼散射的選擇定則
外加交變電磁場(chǎng)作用于分子內(nèi)的原子核和核外電子,可以使分子電荷分布的形狀發(fā)生畸變,產(chǎn)生誘導(dǎo)偶極矩。極化率是分子在外加交變電磁場(chǎng)作用下產(chǎn)生誘導(dǎo)偶極矩大小的一種度量。極化率高,表明分子電荷分布容易發(fā)生變化。如果分子的振動(dòng)過(guò)程中分子極化率也發(fā)生變化,則分子能對(duì)電磁波產(chǎn)生拉曼散射,稱(chēng)分子有拉曼活性。有紅外活性的分子振動(dòng)過(guò)程中有偶極矩的變化,而有拉曼活性的分子振動(dòng)時(shí)伴隨著分子極化率的改變。因此,具有固有偶極矩的極化基團(tuán),一般有明顯的紅外活性,而非極化基團(tuán)沒(méi)有明顯的紅外活性。拉曼光譜恰恰與紅外光譜具有互補(bǔ)性。凡是具有對(duì)稱(chēng)中心的分子或基團(tuán),如果有紅外活性,則沒(méi)有拉曼活性;反之,如果沒(méi)有紅外活性,則拉曼活性比較明顯。一般分子或基團(tuán)多數(shù)是沒(méi)有對(duì)稱(chēng)中心的,因而很多基團(tuán)常常同時(shí)具有紅外和拉曼活性。當(dāng)然,具體到某個(gè)基團(tuán)的某個(gè)振動(dòng),紅外活性和拉曼活性強(qiáng)弱可能有所不同。有的基團(tuán)如乙烯分子的扭曲振動(dòng),則既無(wú)紅外活性又無(wú)拉曼活性。
3、激光拉曼光譜在催化研究中的應(yīng)用
應(yīng)用激光光源的拉曼光譜法,由于激光具有單色性好、方向性強(qiáng)、亮度高、相干性等特性,因此,激光拉曼光譜與傅里葉變換紅外光譜相配合,已成為分子結(jié)構(gòu)研究的主要手段。激光拉曼光譜應(yīng)用于催化領(lǐng)域的研究已經(jīng)有幾十年的歷史,并在負(fù)載型金屬氧化物、分子篩、原位反應(yīng)和吸附等研究中取得了豐富的成果。
激光拉曼光譜在分子篩研究中的應(yīng)用:分子篩的骨架振動(dòng)、雜原子分子篩的表征、分子篩的合成。催化劑表面吸附的研究:目前拉曼光譜在催化劑表面吸附行為研究中的主要用途之一就是以吡啶為吸附探針對(duì)催化劑的表面酸性進(jìn)行研究。催化劑表面物種的研究:拉曼光譜在負(fù)載型金屬氧化物的研究中發(fā)揮了很重要的作用,不但能夠得到表面物種的結(jié)構(gòu)信息,而且能將結(jié)構(gòu)與反應(yīng)活性和選擇性進(jìn)行很好地關(guān)聯(lián),這在催化研究中是非常重要的但是,由于載體一般有很強(qiáng)的熒光干擾,使一些氧化物,特別是低負(fù)載量氧化物的常規(guī)拉曼光譜研究遇到了很大的困難。催化劑表面相變的研究:金屬氧化物配位結(jié)構(gòu)和分散狀態(tài)的研究等。#p#分頁(yè)標(biāo)題#e#
反映TO薄膜結(jié)構(gòu),D表示~層薄膜,℃下,只有銳鈦礦的Raman峰;1層,2層薄膜結(jié)晶不好,因?yàn)镕e的擴(kuò)散,灼燒時(shí)間短,膜薄等;3,4層區(qū)別不大,都具有結(jié)晶完好的銳鈦礦的Raman峰;Raman峰的位置會(huì)隨著粒子粒徑和孔徑的大小發(fā)生變化。粒徑的變小會(huì)使峰位置偏移,峰不對(duì)稱(chēng)加寬,峰強(qiáng)變?nèi)?TiO2薄膜孔徑變小,體現(xiàn)在142cm的峰位置變化明顯,從位置142cm-1到145cm-1的變化,顯示粒徑的大小為10nm。圖3顯示了2%molY不同焙燒溫度的紫外拉曼光譜,激光源為244nm。在500℃焙燒樣品后,給出340,374,476,613和640cm-1五個(gè)主要譜峰。從340和374cm-1的譜峰與476和630cm譜峰的相對(duì)強(qiáng)度可知500℃焙燒后,主要以單斜相的形式存在。隨著焙燒溫度的增加,譜峰在強(qiáng)度,寬度和頻率上幾乎沒(méi)有變化。在500到800℃焙燒過(guò)程中只觀(guān)察到氧化鋯單斜相的譜峰。
譜峰變寬,在930和1070cm出現(xiàn)兩個(gè)新的譜峰。930cm的譜峰為骨架外聚合氧化釩的V=O對(duì)稱(chēng)伸縮振動(dòng)峰,而的譜峰為骨架四配位氧化釩的V=O對(duì)稱(chēng)伸縮振動(dòng)峰。作者認(rèn)為在可見(jiàn)拉曼光譜中未發(fā)現(xiàn)930和1070cm-1兩譜峰,是由于244vim波長(zhǎng)的激發(fā)線(xiàn)激發(fā)了骨架釩和非骨架釩物種的荷電躍遷,因此共振效應(yīng)使這兩個(gè)峰的強(qiáng)度增強(qiáng),從而同時(shí)得到了骨架礬和非骨架礬物種的紫外拉曼光譜的譜峰。圖4為Siliealite1和Fe-ZSM-5的紫外拉曼光譜圖。與Silicalite-1的紫外拉曼光譜圖相比,Fe-ZSM-55的紫外拉曼光譜圖在516、580、1026、1126和1185cm-1處出現(xiàn)了五個(gè)新譜峰。由于紫外激發(fā)線(xiàn)位于骨架鐵和氧之間的荷電躍遷區(qū)(250rim),這些譜峰可被歸屬于骨架鐵物種的共振拉曼峰。此外,利用紫外拉曼光譜作者還檢測(cè)到sili-calite1和ZSM-5分子篩中痕量鐵的存在,這說(shuō)明紫外共振拉曼光譜是一項(xiàng)靈敏的表征分子篩中骨架雜原子的可靠手段。
轉(zhuǎn)載請(qǐng)注明出處。