戀夜直播app官方正版下载_戀夜直播高品质美女在线视频互动社区_戀夜直播官方版

閱讀 | 訂閱
閱讀 | 訂閱
汽車制造

特斯拉為什么不用激光雷達和高精地圖

星之球科技 來源:智能交通前沿科技2021-04-13 我要評論(0 )   

目前搭載自動駕駛功能的車輛所搭載的主流傳感器有攝像頭、毫米波雷達、超聲波雷達和激光雷達。為什么特斯拉不用激光雷達?當前的汽車激光雷達主要分為機械式、MEMS、OPA...

目前搭載自動駕駛功能的車輛所搭載的主流傳感器有攝像頭、毫米波雷達、超聲波雷達和激光雷達。

為什么特斯拉不用激光雷達?

當前的汽車激光雷達主要分為機械式、MEMS、OPA、Flash四種方式,簡單粗暴點理解就是:

激光雷達的原理類似于用激光筆對外發(fā)射光線,固態(tài)激光雷達對外發(fā)射激光的方向及角度是固定的,所以覆蓋范圍很有限,原理簡單,器件比較穩(wěn)定,造價也低。

機械式激光雷達則是搞一面鏡子繞著激光源轉啊轉,達到更多角度的覆蓋,大家看到一些車輛上面有儀器在轉啊轉的,就是這個原理。因為對裝配要求高,機械式激光雷達很難做到量產,例如,Velodyne 的32線激光雷達HDL-32E就需要32組發(fā)射光源與32組接收光源進行一一對應調試,還容易出故障。

混合固態(tài)激光雷達則是用MEMS振鏡旋轉來完成激光掃描,參考下圖中的最右。需要運動的器件少于機械式激光雷達,所以在保證性能的情況下,更穩(wěn)定,更容易滿足汽車量產要求。

而特斯拉之所以不使用激光雷達,是因為激光雷達目前成本較高,并且能達到車規(guī)級的還不多,穩(wěn)定性不高。

目前多家車企,如小鵬、蔚來都號稱會在新車型中搭載激光雷達。而在L4級別自動駕駛領域,使用激光雷達的企業(yè)是以谷歌Waymo為代表的,是多傳感器融合的路線,同時用上了攝像頭和激光雷達。

多傳感器融合是Waymo采用的主要路徑,在自動駕駛應用中扮演著舉足輕重的角色。

不同的傳感器都有其自身的優(yōu)勢和劣勢,例如攝像機在弱光及高對比度光線條件場景下很難捕捉足夠的視覺信息;激光雷達在霧氣/雨滴/雪花/汽車尾氣/反射等場景下容易形成虛假點;毫米波雷達在通過隧道、大橋等場景下雷達探測可信性降低。

自動駕駛因其問題復雜度高、安全第一等特性,需要依靠多種傳感器數(shù)據(jù)的相互融合來提高感知效果。將多傳感器信息融合在一起的方式有多種,例如前融合和后融合。

前融合是將傳感器原始信息直接融合到一起進行處理,這種方法使得算法在開始就能拿到最全面的數(shù)據(jù)。所有的數(shù)據(jù)都在最開始匯總在一起,但如果一個傳感器出現(xiàn)問題,就會造成感知模塊失效。

后融合是將各個傳感器信息單獨處理,各自在各自的處理通道上拿到接近最終形態(tài)的結果,之后再融合在一起。這種方法使得不同傳感器彼此更加獨立,即便個別傳感器失效,或者標定同步有些許偏差,也對最終的結果影響不大。但對算力的消耗卻比較大。

谷歌和特斯拉這兩家公司,關于是否使用激光雷達的battle從未停止,diss連年不斷。這不僅是兩家公司之間的爭論,也可以說是實現(xiàn)自動駕駛的路徑之爭。

特斯拉還不用高精地圖?

什么是高精度地圖

上面這張圖是普通的導航地圖,但這類地圖在重慶這樣的城市會經(jīng)常失效。

重慶有大量穿行在山間的道路,重慶的高架一般都設有4層左右。在跟著導航走的時候,可能導航顯示你走的是第三層的路線,而你走的卻是第四層。

下面這張圖是高精度地圖:

這種圖里只有車道線、路牌和紅綠燈這些最基本的信息,這類高精度地圖是給車看的,不是給人看的。因為車輛要實時用,不可能做得很真實漂亮,略去了很多細節(jié)。

如果把車輛比作一個人,那高精度地圖就是你腦海里對于某個路段的記憶。如果旁邊的景色跟你記憶中的景色匹配上了,就能夠告訴你你具體是在哪個位置,避免出現(xiàn)像導航地圖那樣的問題,分不清是在主路還是在輔路,或者分不清在高架橋上還是在高架橋下。

一般的導航地圖的作用就是導航,但在自動駕駛領域,導航只是高精度地圖的最基本作用,除此之外,高精度地圖還能發(fā)揮很多用處,簡單舉幾個例子:

應對復雜天氣和道路信息缺失

如果無人駕駛車開在路上,發(fā)現(xiàn)原本路上的一條車道線被磨沒了,那車輛會不會就壓線或者直接跑出當前車道了呢?有了高精度地圖以后,在車道線殘缺或沒有車道線的場景中,高精度地圖可提供道路信息,讓車輛可以保持在一個車道里。

又或者突然下起暴雨或暴雪的情況下,有些車道線被路面雨水反光給影響了,或者被雪給蓋住了。那靠著高精度地圖,也能減少影響。

此外,在無人駕駛車經(jīng)過一些坡道時,高精度地圖里因為有坡道的信息,也能讓車輛盡早做好速度規(guī)劃。或者,當你要經(jīng)過一個彎道時,高精度地圖可提前為無人駕駛車提供彎道的曲率信息,讓無人駕駛車可以規(guī)劃好最適合彎道的拐彎速度。

讓無人車駕駛決策更符合人類駕駛習慣

現(xiàn)在的無人駕駛車輛的速度都很低,主要是出于安全考慮。而且無人駕駛車輛對限速的感知并不一定準確,比如前一段路的限速是40公里每小時,這一段路變成了60公里每小時,但卻沒有指示牌。

如果車輛在路上一直保持40公里每小時的速度,肯定會被各種鳴笛、超車,更容易出事故。

而未來高精度地圖也可以通過收集過往信息,知道每個時段在某個路段車輛的平均行駛速度,這樣無人駕駛車可以選擇一個更符合人類駕駛習慣的合適速度。就跟現(xiàn)有的一般導航地圖可以查詢過往某段路程在某個時間的預計行駛時間一樣。

在面對復雜環(huán)境時,更好地了解其他車的行為

為了讓無人駕駛車在行駛過程中能夠及時、準確地對他車行為作出反應,保證行駛的舒適性與安全性,算法需要對他車的行為與路徑作出相對準確的預測。

借助高精度地圖提供的信息,可以為預測算法提供很強的輔助信息,舉個例子,通過高精度地圖查詢到前方右側有輔路入口或者車道合并的情況,那么該處出現(xiàn)的車輛就很有可能會作出向左變道或加速并入等動作。根據(jù)左右車道線虛實情況,也可以更好的幫無人駕駛車判斷旁邊車輛加塞的可能性。

未來,還可以跟路端的傳感器信息相結合,比如現(xiàn)有馬路上的限速攝像頭,如果通過感知算法,能把路上車輛的情況都感知出來,并且同步在高精度地圖里,那也就不用擔心車輛周圍會有感應不到的盲區(qū)了,也能避免鬼探頭等情況的發(fā)生。

目前高精度地圖最大的兩個問題

1.標準不統(tǒng)一

可能各家都有各家的標準,所以數(shù)據(jù)無法共通,地圖也無法共用。

統(tǒng)一高精地圖的數(shù)據(jù)模型與交換格式,將有助于減少汽車制造商的開發(fā)時間和不必要的成本,同時保證未來跨品牌車輛使用的高清地圖都可以不斷共享刷新數(shù)據(jù)。

2019年6月,全國智能運輸系統(tǒng)標準化技術委員會正式在官方網(wǎng)站發(fā)布智能駕駛電子地圖數(shù)據(jù)模型與交換格式的相關國家標準征求意見稿,相信過不久標準也能得到統(tǒng)一。

參與起草相關的國家標準的單位有四維圖新、高德軟件有限公司、北京百度網(wǎng)訊科技有限公司、交通運輸部公路科學研究院、武漢中海庭數(shù)據(jù)技術有限公司、上海汽車集團股份有限公司、北京建筑大學等。

2.更新成本高且慢

目前國內很多自動駕駛方案,較多地采用了激光雷達LiDAR的定位方案,通過LiDAR發(fā)射的激光,感知周邊建筑及道路環(huán)境作為約束,實現(xiàn)高精度定位。

這種方案可以實現(xiàn)10cm量級的定位精度,但是激光雷達成本較高,很難做到大規(guī)模建圖和經(jīng)常性更新。

另外還有利用視覺方案進行定位的方案,但這種方案做出來的地圖不確定性太大,畢竟是靠視覺,可能會漏檢許多東西。

高精度地圖對于無人駕駛車至關重要,不解決這兩大難題,無人駕駛很難有大規(guī)模的商業(yè)化落地。

在堅決不用激光雷達以及高精度地圖的情況下,特斯拉目前的自動駕駛功能還只能達到L2級別,只是自動駕駛輔助功能,不能脫離雙手或者脫離雙腳,技術的成熟度遠遠不夠。


轉載請注明出處。

制造業(yè)激光特斯拉激光雷達
免責聲明

① 凡本網(wǎng)未注明其他出處的作品,版權均屬于激光制造網(wǎng),未經(jīng)本網(wǎng)授權不得轉載、摘編或利用其它方式使用。獲本網(wǎng)授權使用作品的,應在授權范圍內使 用,并注明"來源:激光制造網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關責任。
② 凡本網(wǎng)注明其他來源的作品及圖片,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本媒贊同其觀點和對其真實性負責,版權歸原作者所有,如有侵權請聯(lián)系我們刪除。
③ 任何單位或個人認為本網(wǎng)內容可能涉嫌侵犯其合法權益,請及時向本網(wǎng)提出書面權利通知,并提供身份證明、權屬證明、具體鏈接(URL)及詳細侵權情況證明。本網(wǎng)在收到上述法律文件后,將會依法盡快移除相關涉嫌侵權的內容。

網(wǎng)友點評
0相關評論
精彩導讀